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LElTER TO THE EDITOR 

Phase transition in a generalized self-organized depinning 
model 

N I Lebedev* and Y-C Zhang 
Institute de Physique Theorique, Pemlles, University de Fribourg. CH-1700, Switzerland 

Received 20 July 1995 

Abstract. We investigate numerically a genenlized version of a model recently proposed 
by several authors for describing the critical behaviour of a driven interface in a random 
medium (the self-organized depinning model). The genemlized version allows growth events 
with simultaneous movements of groups of connected cells of arbiuary size, and includes an 
extemd driving force. In I + I dimensions, the model exhibits phase transition fmm a phase 
with directed percolation exponents to one with the usual exponents (U = i. ,9 = 4). But at 
the h s i t i o n  point. exponents are those of Parisi models. 

In recent years the phenomena related to the dynamics of surface growth atmcted 
considerable attention [ I ,  21. Many investigations have centred on the dynamic scaling 
properties of the RMS interface width 

w ( L ,  t )  = [((h'(L, t )  - h'(0, 0))2)]"2 - La . Q(t/L"'B) (1) 
where h'(x, t )  = h(x, t ) -  (h).  In general, two kinds of growth process can be distinguished: 
problems in which the noise term randomly depends on time, and problems in which the 
noise term is quenched in space. The latter case, which is important in particular for 
describing the depinning transition of surfaces in random media, seems to be much less 
understood to date. Parisi [3] has investigated numerically several models which are close 
to direct enumeration of the continuous equation for the interface position h(x ,  t ) :  

where f ( h , x )  is a quenched random force, and F is an external driving force. The 
Parisi result for the temporal exponent j3 at the depinning transition in 1 + 1 dimensions: 
f i  Y 0.75 is consistent with the renormalization group prediction of Nattermann et al 141: 
,9 = 2 -26/9, with 6 = 4 - d. On the other hand, Buldyrev et al 1.51, Tang and Leschhorn 
[6], 'Sneppen 171, Zaitsev [8] and Havlin et al [9] have proposed another class of model, 
relating the critical properties of the depinning transition to the directed percolation problem. 
Consequently, the exponents (Y and ,9 at the transition point in these models are mapped to 
known exponents of the directed percolation problem, and are different from values obtained 
by Parisi. It was shown recently that in continuous form the models [5-91 can be described 
by equation (2), but with the nonlinear term A(Vh)2, where A diverges at the depinning 
transition [15]. Additional interest [1&12] in the model proposed in [7-91 comes from the 
fact that it provides an interesting example of self-organized critical phen0men.q when a 
system achieves a state with non-trivial power-law correlations without the tuning of any 
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external parameters. This is the reason why the model in 17-91 is often referred to as the 
self-organized depinning (SOD) model. 

In this paper we investigate numerically a generalized version of the SOD model in 1 + 1 
dimensions. One purpose of this investigation is to understand how robust the exponents are 
under natural changes of model parameters, i.e. what is the phase diagram of the generalized 
model. The more important purpose is to try to understand the fundamental reason behind 
the difference between the exponents of the Parisi models [3] and the ‘directed percolation’ 
models [5-9]. 

The definition of the SOD model [7-91 is quite simple. To each cell (i, h)  on a square 
lattice, a random pinning force f(i, h) uniformly distributed in the interval (0, 1) is assigned. 
The interface is specified by a set of  integer column heights h(i) (i = 1, . . . , L). The growth 
h(i) --f h(i) + 1 proceeds at the site where the pinning force is minimum among all the 
interface sites. Then adjustments of the neighbouring sites are made until the Kim-Kosterlitz 
condition I131 lh(i)-h(i+l)l < 1 (for all i) is recovered. In spite of the seeming simplicity, 
the SOD model leads to a rich set of non-trivial exponents [lo], all of which can be related 
to the exponents of the directed percolation [II ,  121. 

We note that the ‘minimum force’ growth rule just summarized seems to be very natural 
because it reflects the tendency of the system to make the most profitable motion (from the 
energy point of view). But what should happen if the most profitable motion corresponds 
in fact not to movement of a single cell, but to some movement of a group of connected 
cells? More precisely, one can assign to any movement of given group cells i, i + 1, . . . , j 
the total energy gain: 

E(i ,  j ) =  f ( i , h ( i ) ) + f ( i + I , h ( i + l ) ) + . . . + f ( j , h ( i ) )  (3) 

(the energy here is of the same dimension as a force, because all movements are of unit 
length: h(i)  --f h( i )  --f h(i) + 1). It would be reasonable to move the whole group of cells 
which minimize sum (3) in one time.Step. Of course, if all the forces are positive as in 
the case of the original SOD model, the minimum will be always given by movements of a 
single cell. However, there is, in fact, no reason apart from simplicity to consider all forces 
to be in the interval (0, I ) .  

Now we are ready to formulate the generalized version of the SOD model which is the 
focus of our investigation in this paper. Each cell is assigned by a random force f(i, h) 
uniformly distributed in the interval (-f, +&), plus a uniform driving force F. At each 
time step we choose, among all possible groups of connected cells i, i + 1, . . . , j ,  the 
group which provides the minimum of the energy E (3) and then move this group. (We 
note that cells with negative force f ( i ,  h )  have in this scheme greater chance to move 
than those with positive f(i, h). This means one should consider the positive direction of 
the force to be opposite to the direction of interface propagation.) As in the original SOD 
model discussed above, each movement of a group is followed by necessary adjustments 
of neighbouring cells until the Kim-Kosterlitz condition is recovered. As usual, periodic 
boundary conditions are assumed. 

Of course, our modified version of the model is much more challenging for numerical 
simulations than the original one, because formally we should search for a minimum not 
among L forces as in the original SOD model, but among Lz energies (3). In order to make 
the computations more efficienf we have developed a non-trivial algorithm for searching a 
minimum of sums of type (3), which needs only an amount of computer time linear in L. 

The results from our numerical calculations for the modified SOD model are as follows. 
The model undergoes a phase transition with variation in the driving force F. For zero or 
small negative F ( F  > Fo Y -0.12). the exponents are still the same as for the original 
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Figure 1. The dependences of the inlerface width on space (crosses) and time (triangles) for 
F > Fo; which gives exponents o. = 0.63 i 0.01, f l  = 0.68 j: 0.01. 

Figure 2. The dependences of the interface widlh on space (crosses) and time (viangles) for 
F < f i b ;  with exponents o. = 0.52 i O.OLfl= 0.32 & 0.02. 

SOD model. Indeed, the corresponding scaling dependences are shown in figure 1. To be 
sure that we are in the saturation regime, the first 5 x lo6 time steps were omitted from 
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the measurements. The obtained values of or = 0.63 x 10.01 and j3 = 0.68 k 0.01 are in 
good agreement with the known values or N 0.63 and j3 N 0.69 [5-91. As F is approaching 
FO from above. the average size of moving group of cells grows to infinity @ecomes of 
the order of the system size L). Simultaneously the average force f,, measured on the 
surface (which is different from the average force in the bulk), approaches zero. Results for 
F e FO @ut F > -0.5) are shown in figure 2. Here or = 0.5210.02 and ,9 = 0.32k0.02, 
which is very close to the values and 4 [14]. In this phase the average size of a moving 
group is only slightly smaller than the system size L, and the difference between them (the 
size of the non-moving part of the surface) diverges while F approaches FO from below. 
Exponents at the transition point F = FO (figure 3) or = 0.98 * 0.02 and p = 0.75 & 0.02 
differ from the exponents in both phases above and below Fa. f i  = 0.75 is just the Parisi 
value [3] and or is actually very close to unity [4]. We have not detected any finite interval 
of F in which these exponents still hold. At F = -0.5 the model undergoes another phase 
transition to the flat phase (or = 0), butwe are not interested in this particular transition in 
the present study. 

, , I  

I 
10 . 100 1000 

F i y r e  3. The dependences of the interface width on space (crosses) and time (triangles) for 
F = f i ! ;  with exponents OL = 0.98 f 0.02, 0 = 0.75 f 0.02. 

The fact that the average force fa", measured on the surface, equals zero at the transition 
point F = Fo, seems to be rather natural. Indeed, if we imagine an elastic surface, driven 
by external force in a random medium, and just write down the Newton equation for the 
average displacement of the surface, then the total sum of all forces acting on the surface 
should enter this equation. This total sum is proportional to fa". Therefore one can conclude 
that the depinning transition of the surface actually corresponds to the condition fa" = 0. 
Remarkably, the same results as those presented in figure 3 can also be obtained without 
tuning F to Fo, but using the self-tuning version of the model, which imitates the condition 
fev = 0. In this version, we calculate fa. at each time step, and use f(i, h)  - fa" instead 
of f(i, h) for calculating the energies ~ ( i ,  j )  (3). 
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By definition in our model the surface does not stop motion for any value of the driving 
force F.  The artificial motion in the limit f + CO below the depinning transition should 
be eliminated allowing only profitable movements, decreasing the energy of the system. 
We accepted the condition that the minimum of the energies (3) counted with the energy 
of correspondent adjustments should be negative. The calculations show that with such an 
additional condition the surface indeed finally stops for F > Fo. The space exponent or of 
the pinned surface is found to be the same as without the additional constraint, and the time 
exponent j3 stays as a transient one. 

In conclusion, we would like to stress the following. The models in Buldyrev et al [5] 
and Tang and Leschhorn [6] describe the depinned phase (or = 4, j3 = 4) and the pinned 
phase with directed percolation exponents. Although some effective 01 slightly above the 
transition can seem to be higher than the directed percolation value 01 N 0.63 [S, 61, precisely 
at the transition 01 2: 0.63 as in the pinned phase. The SOD model [7-9] is supposed to be the 
self-tuning version (i.e. the version corresponding precisely to the depinning transition) for 
the models [5,6]. Therefore one could expect that our modified version of the SOD model, 
which again includes driving force F.  will just reproduce the results in [5,6]. Indeed, the 
model also gives the depinned phase with or = and @ = 4, and the pinned phase with the 
directed percolation exponents. But the model differs from the original SOD model not only 
by the inclusion of the driving force F ;  the important generalization of the SOD growth rule 
is that the movement of a group of cells of arbitrary size is allowed, if this movement is 
the most profitable one energetically (3). w i t h  the restriction allowing one to move only a 
single cell our model is still exactly equivalent to the SOD.) As a consequence, the picture 
of the phase transition appears to be very different from that of the models in [5, 61. The 
average size of groups of moving cells diverges when F + Fo, in drastic contrast with the 
original SOD model. At the same time the exponents at the transition point appeared to be 
those of the Parisi models. So we conclude that the collective effects are responsible for 
the change of the directed percolation exponents [5-91 at the depinning transition to that of 
the Parisi [3] and the renormalization group [4] values. 

We are indebted to S Feng for useful .discussions. One of us (NIL) acknowledges the 
Institute of Theoretical Physics of the University of Fribourg and the Solid State Group of 
the University of California at Los Angeles for kind hospitality. 
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